成人资源站I久久夜色精品国产I永久免费精品影视网站I涩涩久久I午夜福利电影I国产一区二区三区久久久久久久久I欧美一区二区视频在线I欧美jizzhd精品欧美性24I在线免费黄色I污在线观看I免费精品视频一区二区I射射avI国产99爱I欧美一卡二卡在线观看I国产伊人avI艳妇臀荡乳欲伦交换电影I少妇真人直播免费视频I免费黄色小视频I免费成人小视频I无码一区二区三区在线

 
繁體中文版  加入收藏  設為首頁 
脈沖寬度調制
來源:華光高科 時間:2013-8-5 7:08:07 點擊: 


    脈沖寬度調制是一種模擬控制方式,其根據相應載荷的變化來調制晶體管柵極或基極的偏置,來實現開關穩壓電源輸出晶 體管或晶體管導通時間的改變,這種方式能使電源的輸出電壓在工作條件變化時保持恒定,是利用微處理器的數字輸出來對模擬電路進行控制的一種非常有效的技術。
  PWM控制技術以其控制簡單,靈活和動態響應好的優點而成為電力電子技術最廣泛應用的控制方式,也是人們研究的熱點.由于當今科學技術的發展已經沒有了學科之間的界限,結合現代控制理論思想或實現無諧振軟開關技術將會成為PWM控制技術發展的主要方向之一。
一、脈沖寬度調制基本原理
  隨著電子技術的發展,出現了多種PWM技術,其中包括:相電壓控制PWM、脈寬PWM法、隨機PWM、SPWM法、線電壓控制PWM等,而在鎳氫電池智能充電器中采用的脈寬PWM法,它是把每一脈沖寬度均相等的脈沖列作為PWM波形,通過改變脈沖列的周期可以調頻,改變脈沖的寬度或占空比可以調壓,采用適當控制方法即可使電壓與頻率協調變化。可以通過調整PWM的周期、PWM的占空比而達到控制充電電流的目的。
  模擬信號的值可以連續變化,其時間和幅度的分辨率都沒有限制。9V電池就是一種模擬器件,因為它的輸出電壓并不精確地等于9V,而是隨時間發生變化,并可取任何實數值。與此類似,從電池吸收的電流也不限定在一組可能的取值范圍之內。模擬信號與數字信號的區別在于后者的取值通常只能屬于預先確定的可能取值集合之內,例如在{0V, 5V}這一集合中取值。
  模擬電壓和電流可直接用來進行控制,如對汽車收音機的音量進行控制。在簡單的模擬收音機中,音量旋鈕被連接到一個可變電阻。擰動旋鈕時,電阻值變大或變小;流經這個電阻的電流也隨之增加或減少,從而改變了驅動揚聲器的電流值,使音量相應變大或變小。與收音機一樣,模擬電路的輸出與輸入成線性比例。
  盡管模擬控制看起來可能直觀而簡單,但它并不總是非常經濟或可行的。其中一點就是,模擬電路容易隨時間漂移,因而難以調節。能夠解決這個問題的精密模擬電路可能非常龐大、笨重(如老式的家庭立體聲設備)和昂貴。模擬電路還有可能嚴重發熱,其功耗相對于工作元件兩端電壓與電流的乘積成正比。模擬電路還可能對噪聲很敏感,任何擾動或噪聲都肯定會改變電流值的大小。
  通過以數字方式控制模擬電路,可以大幅度降低系統的成本和功耗。此外,許多微控制器和DSP已經在芯片上包含了PWM控制器,這使數字控制的實現變得更加容易了。
二、脈沖寬度調制具體過程
  脈沖寬度調制(PWM)是一種對模擬信號電平進行數字編碼的方法。通過高分辨率計數器的使用,方波占空比調制用來對一個具體模擬信號的電平進行編碼。PWM信號仍然是數字的,因為在給定的任何時刻,滿幅值的直流供電要么完全有(ON),要么完全無(OFF)。電壓或電流源是以一種通(ON)或斷(OFF)的重復脈沖序列被加到模擬負載上去的。通的時候即是直流供電被加到負載上的時候,斷的時候即是供電被斷開的時候。只要帶寬足夠,任何模擬值都可以使用PWM進行編碼。
  多數負載(無論是電感性負載還是電容性負載)需要的調制頻率高于10Hz,通常調制頻率為1kHz到200kHz之間。
  許多微控制器內部都包含有PWM控制器。例如,Microchip公司的PIC16C67內含兩個PWM控制器,每一個都可以選擇接通時間和周期。占空比是接通時間與周期之比;調制頻率為周期的倒數。執行PWM操作之前,這種微處理器要求在軟件中完成以下工作:
  1、設置提供調制方波的片上定時器/計數器的周期
  2、 在PWM控制寄存器中設置接通時間
  3、設置PWM輸出的方向,這個輸出是一個通用I/O管腳
  4、啟動定時器
  5、使能PWM控制器
三、脈沖寬度調制的優點
  PWM的一個優點是從處理器到被控系統信號都是數字形式的,無需進行數模轉換。讓信號保持為數字形式可將噪聲影響降到最小。噪聲只有在強到足以將邏輯1改變為邏輯0或將邏輯0改變為邏輯1時,也才能對數字信號產生影響。
  對噪聲抵抗能力的增強是PWM相對于模擬控制的另外一個優點,而且這也是在某些時候將PWM用于通信的主要原因。從模擬信號轉向PWM可以極大地延長通信距離。在接收端,通過適當的RC或LC網絡可以濾除調制高頻方波并將信號還原為模擬形式。
  總之,PWM既經濟、節約空間、抗噪性能強,是一種值得廣大工程師在許多設計應用中使用的有效技術。
四、脈沖寬度調制控制方法
  采樣控制理論中有一個重要結論:沖量相等而形狀不同的窄脈沖加在具有慣性的環節上時,其效果基本相同.PWM控制技術就是以該結論為理論基礎,對半導體開關器件的導通和關斷進行控制,使輸出端得到一系列幅值相等而寬度不相等的脈沖,用這些脈沖來代替正弦波或其他所需要的波形.按一定的規則對各脈沖的寬度進行調制,既可改變逆變電路輸出電壓的大小,也可改變輸出頻率.
  PWM控制的基本原理很早就已經提出,但是受電力電子器件發展水平的制約,在上世紀80年代以前一直未能實現.直到進入上世紀80年代,隨著全控型電力電子器件的出現和迅速發展,PWM控制技術才真正得到應用.隨著電力電子技術,微電子技術和自動控制技術的發展以及各種新的理論方法,如現代控制理論,非線性系統控制思想的應用,PWM控制技術獲得了空前的發展.到目前為止,已出現了多種PWM控制技術,根據PWM控制技術的特點,到目前為止主要有以下8類方法.
4.1、相電壓控制PWM
  4.1.1 等脈寬PWM[1]
  VVVF(Variable Voltage Variable Frequency)裝置在早期是采用PAM(Pulse Amplitude Modulation)控制技術來實現的,其逆變器部分只能輸出頻率可調的方波電壓而不能調壓.等脈寬PWM法正是為了克服PAM法的這個缺點發展而來的,是PWM法中最為簡單的一種.它是把每一脈沖的寬度均相等的脈沖列作為PWM波,通過改變脈沖列的周期可以調頻,改變脈沖的寬度或占空比可以調壓,采用適當控制方法即可使電壓與頻率協調變化.相對于PAM法,該方法的優點是簡化了電路結構,提高了輸入端的功率因數,但同時也存在輸出電壓中除基波外,還包含較大的諧波分量.
  4.1.2、隨機PWM
  在上世紀70年代開始至上世紀80年代初,由于當時大功率晶體管主要為雙極性達林頓三極管,載波頻率一般不超過5kHz,電機繞組的電磁噪音及諧波造成的振動引起了人們的關注.為求得改善,隨機PWM方法應運而生.其原理是隨機改變開關頻率使電機電磁噪音近似為限帶白噪聲(在線性頻率坐標系中,各頻率能量分布是均勻的),盡管噪音的總分貝數未變,但以固定開關頻率為特征的有色噪音強度大大削弱.正因為如此,即使在IGBT已被廣泛應用的今天,對于載波頻率必須限制在較低頻率的場合,隨機PWM仍然有其特殊的價值;另一方面則說明了消除機械和電磁噪音的最佳方法不是盲目地提高工作頻率,隨機PWM技術正是提供了一個分析,解決這種問題的全新思路.
  4.1.3SPWM
  SPWM(Sinusoidal PWM)法是一種比較成熟的,目前使用較廣泛的PWM法.前面提到的采樣控制理論中的一個重要結論:沖量相等而形狀不同的窄脈沖加在具有慣性的環節上時,其效果基本相同.SPWM法就是以該結論為理論基礎,用脈沖寬度按正弦規律變化而和正弦波等效的PWM波形即SPWM波形控制逆變電路中開關器件的通斷,使其輸出的脈沖電壓的面積與所希望輸出的正弦波在相應區間內的面積相等,通過改變調制波的頻率和幅值則可調節逆變電路輸出電壓的頻率和幅值.該方法的實現有以下幾種方案.
  4.1.3.1、等面積法
  該方案實際上就是SPWM法原理的直接闡釋,用同樣數量的等幅而不等寬的矩形脈沖序列代替正弦波,然后計算各脈沖的寬度和間隔,并把這些數據存于微機中,通過查表的方式生成PWM信號控制開關器件的通斷,以達到預期的目的.由于此方法是以SPWM控制的基本原理為出發點,可以準確地計算出各開關器件的通斷時刻,其所得的的波形很接近正弦波,但其存在計算繁瑣,數據占用內存大,不能實時控制的缺點.
  4.1.3.2、硬件調制法
  硬件調制法是為解決等面積法計算繁瑣的缺點而提出的,其原理就是把所希望的波形作為調制信號,把接受調制的信號作為載波,通過對載波的調制得到所期望的PWM波形.通常采用等腰三角波作為載波,當調制信號波為正弦波時,所得到的就是SPWM波形.其實現方法簡單,可以用模擬電路構成三角波載波和正弦調制波發生電路,用比較器來確定它們的交點,在交點時刻對開關器件的通斷進行控制,就可以生成SPWM波.但是,這種模擬電路結構復雜,難以實現精確的控制.
  4.1.3.3、軟件生成法
  由于微機技術的發展使得用軟件生成SPWM波形變得比較容易,因此,軟件生成法也就應運而生.軟件生成法其實就是用軟件來實現調制的方法,其有兩種基本算法,即自然采樣法和規則采樣法.
  4.1.3.3.1、自然采樣法[2]
  以正弦波為調制波,等腰三角波為載波進行比較,在兩個波形的自然交點時刻控制開關器件的通斷,這就是自然采樣法.其優點是所得SPWM波形最接近正弦波,但由于三角波與正弦波交點有任意性,脈沖中心在一個周期內不等距,從而脈寬表達式是一個超越方程,計算繁瑣,難以實時控制.
  4.1.3.3.2、規則采樣法[3]
  規則采樣法是一種應用較廣的工程實用方法,一般采用三角波作為載波.其原理就是用三角波對正弦波進行采樣得到階梯波,再以階梯波與三角波的交點時刻控制開關器件的通斷,從而實現SPWM法.當三角波只在其頂點(或底點)位置對正弦波進行采樣時,由階梯波與三角波的交點所確定的脈寬,在一個載波周期(即采樣周期)內的位置是對稱的,這種方法稱為對稱規則采樣.當三角波既在其頂點又在底點時刻對正弦波進行采樣時,由階梯波與三角波的交點所確定的脈寬,在一個載波周期(此時為采樣周期的兩倍)內的位置一般并不對稱,這種方法稱為非對稱規則采樣.
  規則采樣法是對自然采樣法的改進,其主要優點就是是計算簡單,便于在線實時運算,其中非對稱規則采樣法因階數多而更接近正弦.其缺點是直流電壓利用率較低,線性控制范圍較小.
  以上兩種方法均只適用于同步調制方式中.
  4.1.3.4、低次諧波消去法[2]
  低次諧波消去法是以消去PWM波形中某些主要的低次諧波為目的的方法.其原理是對輸出電壓波形按傅氏級數展開,表示為u(ωt)=ansinnωt,首先確定基波分量a1的值,再令兩個不同的an=0,就可以建立三個方程,聯立求解得a1,a2及a3,這樣就可以消去兩個頻率的諧波.
  該方法雖然可以很好地消除所指定的低次諧波,但是,剩余未消去的較低次諧波的幅值可能會相當大,而且同樣存在計算復雜的缺點.該方法同樣只適用于同步調制方式中.
  4.1.4、梯形波與三角波比較法[2]
  前面所介紹的各種方法主要是以輸出波形盡量接近正弦波為目的,從而忽視了直流電壓的利用率,如SPWM法,其直流電壓利用率僅為86.6%.因此,為了提高直流電壓利用率,提出了一種新的方法--梯形波與三角波比較法.該方法是采用梯形波作為調制信號,三角波為載波,且使兩波幅值相等,以兩波的交點時刻控制開關器件的通斷實現PWM控制.
  由于當梯形波幅值和三角波幅值相等時,其所含的基波分量幅值已超過了三角波幅值,從而可以有效地提高直流電壓利用率.但由于梯形波本身含有低次諧波,所以輸出波形中含有5次,7次等低次諧波.
4.2、線電壓控制PWM
   前面所介紹的各種PWM控制方法用于三相逆變電路時,都是對三相輸出相電壓分別進行控制的,使其輸出接近正弦波,但是,對于像三相異步電動機這樣的三相無中線對稱負載,逆變器輸出不必追求相電壓接近正弦,而可著眼于使線電壓趨于正弦.因此,提出了線電壓控制PWM,主要有以下兩種方法.
  4.2.1、馬鞍形波與三角波比較法
  馬鞍形波與三角波比較法也就是諧波注入PWM方式(HIPWM),其原理是在正弦波中加入一定比例的三次諧波,調制信號便呈現出馬鞍形,而且幅值明顯降低,于是在調制信號的幅值不超過載波幅值的情況下,可以使基波幅值超過三角波幅值,提高了直流電壓利用率.在三相無中線系統中,由于三次諧波電流無通路,所以三個線電壓和線電流中均不含三次諧波[4].
  除了可以注入三次諧波以外,還可以注入其他3倍頻于正弦波信號的其他波形,這些信號都不會影響線
  電壓.這是因為,經過PWM調制后逆變電路輸出的相電壓也必然包含相應的3倍頻于正弦波信號的諧波,但在合成線電壓時,各相電壓中的這些諧波將互相抵消,從而使線電壓仍為正弦波.
  4.2.2、單元脈寬調制法[5]
  因為,三相對稱線電壓有Uuv+Uvw+Uwu=0的關系,所以,某一線電壓任何時刻都等于另外兩個線電壓負值之和.現在把一個周期等分為6個區間,每區間60°,對于某一線電壓例如Uuv,半個周期兩邊60°區間用Uuv本身表示,中間60°區間用-(Uvw+Uwu)表示,當將Uvw和Uwu作同樣處理時,就可以得到三相線電壓波形只有半周內兩邊60°區間的兩種波形形狀,并且有正有負.把這樣的電壓波形作為脈寬調制的參考信號,載波仍用三角波,并把各區間的曲線用直線近似(實踐表明,這樣做引起的誤差不大,完全可行),就可以得到線電壓的脈沖波形,該波形是完全對稱,且規律性很強,負半周是正半周相應脈沖列的反相,因此,只要半個周期兩邊60°區間的脈沖列一經確定,線電壓的調制脈沖波形就唯一地確定了.這個脈沖并不是開關器件的驅動脈沖信號,但由于已知三相線電壓的脈沖工作模式,就可以確定開關器件的驅動脈沖信號了.
  該方法不僅能抑制較多的低次諧波,還可減小開關損耗和加寬線性控制區,同時還能帶來用微機控制的方便,但該方法只適用于異步電動機,應用范圍較小.
4.3、電流控制PWM
  電流控制PWM的基本思想是把希望輸出的電流波形作為指令信號,把實際的電流波形作為反饋信號,通過兩者瞬時值的比較來決定各開關器件的通斷,使實際輸出隨指令信號的改變而改變.其實現方案主要有以下3種.
  4.3.1、滯環比較法[4]
  這是一種帶反饋的PWM控制方式,即每相電流反饋回來與電流給定值經滯環比較器,得出相應橋臂開關器件的開關狀態,使得實際電流跟蹤給定電流的變化.該方法的優點是電路簡單,動態性能好,輸出電壓不含特定頻率的諧波分量.其缺點是開關頻率不固定造成較為嚴重的噪音,和其他方法相比,在同一開關頻率下輸出電流中所含的諧波較多.
  4.3.2、三角波比較法[2]
  該方法與SPWM法中的三角波比較方式不同,這里是把指令電流與實際輸出電流進行比較,求出偏差電流,通過放大器放大后再和三角波進行比較,產生PWM波.此時開關頻率一定,因而克服了滯環比較法頻率不固定的缺點.但是,這種方式電流響應不如滯環比較法快.
  4.3.3、預測電流控制法[6]
  預測電流控制是在每個調節周期開始時,根據實際電流誤差,負載參數及其它負載變量,來預測電流誤差矢量趨勢,因此,下一個調節周期由PWM產生的電壓矢量必將減小所預測的誤差.該方法的優點是,若給調節器除誤差外更多的信息,則可獲得比較快速,準確的響應.目前,這類調節器的局限性是響應速度及過程模型系數參數的準確性.
4.4、空間電壓矢量控制PWM [7]
   空間電壓矢量控制PWM(SVPWM)也叫磁通正弦PWM法.它以三相波形整體生成效果為前提,以逼近電機氣隙的理想圓形旋轉磁場軌跡為目的,用逆變器不同的開關模式所產生的實際磁通去逼近基準圓磁通,由它們的比較結果決定逆變器的開關,形成PWM波形.此法從電動機的角度出發,把逆變器和電機看作一個整體,以內切多邊形逼近圓的方式進行控制,使電機獲得幅值恒定的圓形磁場(正弦磁通).
  具體方法又分為磁通開環式和磁通閉環式.磁通開環法用兩個非零矢量和一個零矢量合成一個等效的電壓矢量,若采樣時間足夠小,可合成任意電壓矢量.此法輸出電壓比正弦波調制時提高15%,諧波電流有效值之和接近最小.磁通閉環式引
  入磁通反饋,控制磁通的大小和變化的速度.在比較估算磁通和給定磁通后,根據誤差決定產生下一個電壓矢量,形成PWM波形.這種方法克服了磁通開環法的不足,解決了電機低速時,定子電阻影響大的問題,減小了電機的脈動和噪音.但由于未引入轉矩的調節,系統性能沒有得到根本性的改善.
4.5、矢量控制PWM[8]
   矢量控制也稱磁場定向控制,其原理是將異步電動機在三相坐標系下的定子電流Ia,Ib及Ic,通過三相/二相變換,等效成兩相靜止坐標系下的交流電流Ia1及Ib1,再通過按轉子磁場定向旋轉變換,等效成同步旋轉坐標系下的直流電流Im1及It1(Im1相當于直流電動機的勵磁電流;It1相當于與轉矩成正比的電樞電流),然后模仿對直流電動機的控制方法,實現對交流電動機的控制.其實質是將交流電動機等效為直流電動機,分別對速度,磁場兩個分量進行獨立控制.通過控制轉子磁鏈,然后分解定子電流而獲得轉矩和磁場兩個分量,經坐標變換,實現正交或解耦控制.
  但是,由于轉子磁鏈難以準確觀測,以及矢量變換的復雜性,使得實際控制效果往往難以達到理論分析的效果,這是矢量控制技術在實踐上的不足.此外.它必須直接或間接地得到轉子磁鏈在空間上的位置才能實現定子電流解耦控制,在這種矢量控制系統中需要配置轉子位置或速度傳感器,這顯然給許多應用場合帶來不便.
4.6、直接轉矩控制PWM[8]
   1985年德國魯爾大學Depenbrock教授首先提出直接轉矩控制理論(Direct Torque Control簡稱DTC).直接轉矩控制與矢量控制不同,它不是通過控制電流,磁鏈等量來間接控制轉矩,而是把轉矩直接作為被控量來控制,它也不需要解耦電機模型,而是在靜止的坐標系中計算電機磁通和轉矩的實際值,然后,經磁鏈和轉矩的Band-Band控制產生PWM信號對逆變器的開關狀態進行最佳控制,從而在很大程度上解決了上述矢量控制的不足,能方便地實現無速度傳感器化,有很快的轉矩響應速度和很高的速度及轉矩控制精度,并以新穎的控制思想,簡潔明了的系統結構,優良的動靜態性能得到了迅速發展.
  但直接轉矩控制也存在缺點,如逆變器開關頻率的提高有限制.
4.7、非線性控制PWM
   單周控制法[7]又稱積分復位控制(Integration Reset Control,簡稱IRC),是一種新型非線性控制技術,其基本思想是控制開關占空比,在每個周期使開關變量的平均值與控制參考電壓相等或成一定比例.該技術同時具有調制和控制的雙重性,通過復位開關,積分器,觸發電路,比較器達到跟蹤指令信號的目的.單周控制器由控制器,比較器,積分器及時鐘組成,其中控制器可以是RS觸發器,其控制原理如圖1所示.圖中K可以是任何物理開關,也可是其它可轉化為開關變量形式的抽象信號.
  單周控制在控制電路中不需要誤差綜合,它能在一個周期內自動消除穩態,瞬態誤差,使前一周期的誤差不會帶到下一周期.雖然硬件電路較復雜,但其克服了傳統的PWM控制方法的不足,適用于各種脈寬調制軟開關逆變器,具有反應快,開關頻率恒定,魯棒性強等優點,此外,單周控制還能優化系統響應,減小畸變和抑制電源干擾,是一種很有前途的控制方法.
4.8、諧振軟開關PWM
  傳統的PWM逆變電路中,電力電子開關器件硬開關的工作方式,大的開關電壓電流應力以及高的du/dt和di/dt限制了開關器件工作頻率的提高,而高頻化是電力電子主要發展趨勢之一,它能使變換器體積減小,重量減輕,成本下降,性能提高,特別當開關頻率在18kHz以上時,噪聲將已超過人類聽覺范圍,使無噪聲傳動系統成為可能.
  諧振軟開關PWM的基本思想是在常規PWM變換器拓撲的基礎上,附加一個諧振網絡,諧振網絡一般由諧振電感,諧振電容和功率開關組成.開關轉換時,諧振網絡工作使電力電子器件在開關點上實現軟開關過程,諧振過程極短,基本不影響PWM技術的實現.從而既保持了PWM技術的特點,又實現了軟開關技術.但由于諧振網絡在電路中的存在必然會產生諧振損耗,并使電路受固有問題的影響,從而限制了該方法的應用。
五、脈沖寬度調制相關應用領域
  PWM控制技術主要應用在電力電子技術行業,具體講,包括風力發電、電機調速、直流供電等領域,由于其四象限變流的特點,可以反饋再生制動的能量,對于目前國家提出的節能減排具有積極意義。
六、脈沖寬度調制技術的具體應用
  脈寬調制PWM是開關型穩壓電源中的術語。這是按穩壓的控制方式分類的,除了PWM型,還有PFM型和PWM、PFM混合型。脈寬寬度調制式(PWM)開關型穩壓電路是在控制電路輸出頻率不變的情況下,通過電壓反饋調整其占空比,從而達到穩定輸出電壓的目的。
6.1、PWM軟件法控制充電電流
  本方法的基本思想就是利用單片機具有的PWM端口,在不改變PWM方波周期的前提下,通過軟件的方法調整單片機的PWM控制寄存器來調整PWM的占空比,從而控制充電電流。本方法所要求的單片機必須具有ADC端口和PWM端口這兩個必須條件,另外ADC的位數盡量高,單片機的工作速度盡量快。在調整充電電流前,單片機先快速讀取充電電流的大小,然后把設定的充電電流與實際讀取到的充電電流進行比較,若實際電流偏小則向增加充電電流的方向調整PWM的占空比;若實際電流偏大則向減小充電電流的方向調整PWM的占空比。在軟件PWM的調整過程中要注意ADC的讀數偏差和電源工作電壓等引入的紋波干擾,合理采用算術平均法等數字濾波技術。
6.2 PWM在推力調制中的應用
  1962年,Nicklas等提出了脈沖調制理論,指出利用噴氣脈沖對航天器控制是簡單有效的控制方案,同時能使時間或能量達到最優控制。
  脈寬調制發動機控制方式是在每一個脈動周期內,通過改變閥門在開或關位置上停留的時間來改變流經閥門的氣體流量,從而改變總的推力效果,對于質量流率不變的系統,可以通過脈寬調制技術來獲得變推力的效果。
  脈寬調制通常有兩種方法[15]:第一種為整體脈寬調制,對控制對象進行控制器設計,并根據控制要求的作用力大小,對整個系統模型進行動態的數學解算變換,得出固定力輸出應該持續作用的時間和開始作用時間;第二種為脈寬調制器,不考慮控制對象模型,而是根據輸入進行“動態衰減”性的累加,然后經過某種算法變換后,決定輸出所持續的時間。這種方式非常簡單,也能達到輸出作用近似相同。
  脈寬調制控制技術結構簡單、易于實現、技術比較成熟,俄羅斯已經將其成功地應用于遠程火箭的角度穩定系統控制中。但是當調制量為零時,正反向的控制作用相互抵消,控制效率明顯比變流率系統低。而且系統響應有一定的滯后,其開關的頻率必須遠大于KKV本身的固有頻率,否則不但起不到調制效果,甚至會發生災難性后果。

 


[ 關鍵詞:脈沖寬度調制|脈沖寬度調制基本原理|脈沖寬度調制具體過程|脈沖寬度調制的優點|沖寬度調制控制方法]
【版權聲明】 【返回首頁】 【發表評論- 【打印頁面】 【關閉頁面】 【TOP】
版權:山東濰坊華光高科電子有限公司 2002-2018 魯ICP備09032618號 網站地圖隱私保護法律公告聯系我們網站管理
網址:www.wfhg.com.cn 電話:0536-8222888 8236921 傳真:0536-8298388 手機:13806491159
地址:山東省濰坊市奎文區濰州路1088號(華光高科總部) 郵編:261041
三用表檢定裝置多用表校準儀三表校準儀多功能標準源鉗形表檢定裝置多用表檢定裝置多用表校正儀多功能校準源多功能校準器電三表校驗儀三表校驗儀
萬用表檢定裝置萬用表校準儀三用表校準儀鉗形表校準儀鉗形表校驗儀多用表校準儀多用表校驗儀多功能校準儀多功能校驗儀萬用表校驗儀三用表校驗儀
DO30 ┆┆DO30-2┆┆DO30-3 ┆┆DO30-3A┆┆DO30-D ┆┆DO30-IIB┆┆DO30-Q ┆┆DO3020A┆┆DO30B-2 ┆┆DO30A┆┆DO3020W ┆┆DO30-VI┆┆DO30-E ┆┆NM3000┆┆NM5200 ┆┆NM3200┆┆NM5600
供求信息
HG30 ┆┆HG30-IIB┆┆HG30-3 ┆┆HG3020A┆┆HG30-Q ┆┆HG30-3A┆┆HG30A-2 ┆┆HG30A-1┆┆HG5520A ┆┆HG30-VI┆┆
XF30 ┆┆XF30A┆┆XF30A-1 ┆┆XF30A-2┆┆XF30A-3┆┆XF30DQ┆┆XF30-IIA ┆┆XF30B-2┆┆
┆ ┆
主站蜘蛛池模板: 热播网| 原创av| 在线观看aa| 精品国产福利| 黄色avav| 日韩精品一区二区三区免费视频| 国产69熟| 中文字幕av久久爽一区| 久久二区三区| 韩国黄色精品| 少妇a级片| 少妇福利视频| 久久精品7| 日韩黄动漫| 日本免费网站| 先锋成人| 好男人www日本| 国内一级黄色片| 欧美日韩综合精品| 日本精品黄色| 亚洲免费精品视频| 全黄性性激高免费视频| 成人免费看片98欧美| 超碰一区| 在线国产91| 天天在线观看| 777狠狠干| 四虎四虎院5151hhcom| 午夜色图| 青草福利视频| 激情久久网| 香蕉网站在线观看| 一级在线免费观看| 小草av在线| 国产尤物av| 久久三区| 男女又爽又黄| 天堂а√在线中文在线新版| 人人做人人爽| 青青免费视频| 北条麻妃久久| 人人妻人人澡人人爽精品| 黄色a级大片| 欧妇女乱妇女乱视频| 女同av久久中文字幕字| wwwxx在线| 丝袜制服影音先锋| 天天影视亚洲| 欧州一区二区三区| 大咪咪dvd| aaa一区二区| 色爱成人综合| www.成人| 狠狠影院| 性一区| 一个人在线观看免费视频www| 一级毛片黄色| 欧美三级视频在线| 亚洲伦理视频| 第一页av| a一级视频| 亚洲综合丁香| 刘亦菲国产毛片bd| 国产欧美日韩在线视频| 久久综合一区| 免费久久视频| 色屁屁一区二区三区| 日韩中文字幕在线不卡| 91人妻一区二区| 久久久久网| 日本αv| 亚洲精品国产成人久久av盗摄| 在线播放黄| 女王人厕视频2ⅴk| 亚洲国产成人一区二区| 成熟老妇女视频| 亚洲一区影院| 极品国产一区| 久久色在线观看| 午夜精品久久久久久久91蜜桃| 欧美sm凌虐视频网站| 九九视频免费在线观看| 简单av网| 精品国产乱码久久久久久影片| 绯色av一区二区| 日韩性色| 日韩一区二区不卡| 成人久久| 亚洲春色奇米影视| 国产情侣自拍av| 亲子伦一区二区三区观看方式| 叶山小百合av一区二区| 国产视频入口| 国产一区二区精品| 久久艹影院| 国产成人精品免费网站| 一级色视频| 公侵犯一区二区三区四区中文字幕 | 日韩美在线| 国产主播在线观看| 四虎在线免费| 视频一区二区不卡| 99爱精品视频| 乱码一码二码三码四码公司| 色啪网站| 欧美老熟妇一区二区三区| 久久久青青| 天海翼一区二区三区| 人人搞人人干| 欧美激情亚洲综合| 久久国产免费| 在线看片你懂得| 久久免费福利视频| 亚洲男人天堂2023| 成年网站免费观看| 一级免费观看| 亚洲日韩欧美视频| 泽村玲子成人中文字幕在线| 亚洲一区在线不卡| 双性高h1v1| 一级片在线免费观看视频| 被黑人各种姿势猛c哭h文1| 激情久久网站| 久久精品波多野结衣| 精品一区二区三区视频| 成年女人毛片| 欧美黄色www| 久久久久久久久久网站| 亚洲女人视频| 亚洲熟女一区| 香蕉网站在线| 欧美激情不卡| 精品久久久久久久久久久久久久| 黄色片网站国产| 亚洲少妇中文字幕| 精品福利一区二区| 日本午夜激情视频| 亚洲视频图片小说| 久久激情综合网| 男女啪啪免费| 亚洲一级网| 欧美一卡二卡| 91精品无人区卡一卡二卡三| 精品无码久久久久久久久果冻| 人妖一级片| 亚洲网站免费观看| 欧美浓毛大泬视频| 中文字幕 欧美 日韩| 国产67194| 日韩av无码一区二区三区| 日韩精品福利在线| 中国男女全黄大片| 精品丝袜在线| 免费的三级网站| 日韩超碰| 午夜啪视频| 久久婷婷国产香蕉| 女人高潮特级毛片| 91天堂在线观看| 欧美黑大粗| a黄色一级片| 成人精品视频在线播放| 黄色欧美大片| 色一区二区| 美女福利视频在线观看| 成熟丰满熟妇高潮xxxxx视频| 欧美日韩国产在线播放| 9色91| 黄网站色视频免费观看| 91女人18毛片水多国产| 国产精品美女久久久av超清| 久久香蕉网站| 色呦呦在线看| heyzo国产| 亚洲精品免费在线观看| 国产高清不卡一区二区| 精品人妻在线播放| 国产盗摄一区二区| 乱视频在线观看| 9久久久| 天天爱天天做天天干| 在线免费观看av片| 在线亚洲观看| 国精产品一区二区三区黑人免费看| 伊人影院在线视频| 神马久久久久久久久久| 久热这里有精品| 黄片一区二区三区四区| 成人午夜精品视频| 裸体女视频| 91天天综合| 日本黄动漫| 国产a级网站| 区一区二区三在线观看| 亚洲自拍图片| 久久伊人91| 女人久久久| 亚洲精品.www| 精品三级在线观看| 综合久久中文字幕| 给我免费的视频在线观看| 红桃视频亚洲| 亚洲美女视频在线| 日本人做爰全过程| 日韩av高清无码| 天天干夜夜欢| 天天操夜夜撸| a黄色片| 国产伦精品| 澳门超碰| 欧美亚洲精品天堂| 日本一区二区精品视频| 免费的性爱视频| 欧美破处在线观看| 8x8x成人| 国产精品人人人人| 狠狠干超碰| 六月丁香在线视频| 天天搞天天| 山东少妇露脸刺激对白在线| 一级片免费在线播放| 中文字幕日韩在线播放| 成人av亚洲| 国产看片在线| www视频在线| 狠狠干91| 97超碰总站| 波多野结衣操| 国产高中女学生第一次| 国产粉嫩av| 色播基地| 91重口味| 久草97| 我们的2018中文免费看| 欧美高h视频| 91正在播放| 精品久久久久久久久久久久久久久久| 香蕉视频一级片| 国产性生活| 久久综合精品视频| 久久久亚洲| 寡妇激情做爰呻吟| 手机在线看片你懂的| 色婷婷中文字幕一区二区| 国产精品亚洲αv天堂无码| 囯产精品一品二区三区| 综合在线视频| 中国视频一区二区| 中文字幕在线观看你懂的| 69精品久久久| 白白色视频在线| 99这里精品| 天天色天天综合| 国产美女福利视频| 久久偷看各类wc女厕嘘嘘偷窃| 婷婷九月丁香| 岛国av网址| 色网站在线观看| 免费在线看视频| 捆绑美女调教| 樱花影院电视剧免费| 国语一区二区| av小次郎收藏| 男女那个视频| 欧美淫| 黄在线观看品| 五月天婷婷在线视频| 丝袜国产一区| 污视频在线观看网站| 亚洲 欧美 国产 另类| 欧美日韩在线免费播放| 高h捆绑拘束调教小说| 国语精品| 国产欧美一区二区三区在线老狼 | 女同精品一区二区| 中文字幕一区二区三区四区欧美| 五月婷婷开心| 久久久99久久久国产自输拍| av黄色网| 中出在线播放| 国产xxx在线观看| 久草999| 让人下面流水的视频| 亚洲天堂视频在线观看免费| 自拍 高清 日韩 欧美 另类| 伊人精品视频| 天天搞天天搞| 91成人福利视频| 青青艹av| 精品日韩在线| 岛国av在线不卡| 国产福利视频网站| 亚洲午夜精品久久久| 国产精品成人国产乱| 高清欧美性猛交xxxx黑人猛交| av老司机在线播放| 国产伦精品一区二区三| 色婷婷国产| 久久人精品| 国产精品秘入口18禁麻豆免会员| 亚洲va中文字幕| 91激情视频在线| 成 年人 黄 色 片| 日韩国产在线观看| 有码视频在线观看| 久久亚洲精品电影| 麻豆成人网| 亚洲国产剧情av| 91在线视频免费观看| 黄色免费的视频| 野战少妇38p| 精品噜噜噜噜久久久久久久久试看| 国产丝袜精品| 黄色亚洲网站| 久久久精品综合| avav在线看| 秋霞福利网| 色婷婷免费| 国产女人啪啪| 国产精品一区在线免费观看| 免费阿v视频| 福利在线一区二区| 先锋av资源网站| 国产乱了高清露脸对白| 欧美三区在线观看| 精品人妻一区二区三区视频| ass日本寡妇pics| 大尺度舌吻呻吟声| 欧美性天堂| 成人日b视频| 国产在线区| 少妇天天干| 国产伦精品一区二区免费| 亚洲另类中文字幕| 午夜影院日本| 精品国产乱码久久久久久郑州公司| 婷婷国产天堂久久综合五| 国产精品第8页| 久久丁香网| www在线| 一区视频免费观看| 国产女人18毛片水真多| 亚洲午夜精品一区二区| 日韩aa| 国产女主播在线播放| 一区二区日韩av| 少妇高潮一区二区三区69| 中文字幕成人在线观看| 久久午夜精品人妻一区二区三区| 欧美高清免费| 国产真实乱人偷精品人妻| 青草视频在线免费观看| 国产精品九| 凹凸福利视频| 农村少妇久久久久久久| 日本色视| 手机看片一区| 亚洲精品久久久久久无码色欲四季| 91人网站免费| 中文字幕亚洲激情| 国产欧美韩日| 五月婷婷一区| 欧美日韩毛片| 骚婷婷| 亚洲影院av| 亚洲欧美在线一区| 乌克兰少妇性做爰| 国产精品不卡一区| 国产香蕉9| 国产在线一二三区| 亚洲最大成人av| 国内一级视频| 日韩91| 国产精品欧美日韩一区二区| 国产成人自拍视频在线观看| 黄色片免费播放| 久久精品色| 精69xxxxxx在线观看| 欧美色哟哟| 99久久久无码国产精品性青椒| 国内精品在线观看视频| 有码在线视频| 九九三级| 456欧美成人免费视频| 自拍偷拍 亚洲| 天天干天天上| 麻豆视频免费| 婷婷资源网| 夜间福利影院| 国产在线观看你懂得| 青青草国产成人99久久| 亚洲无人区码一码二码三码| 一区二区三区在线观看免费视频 | 亚洲精品高清在线| 久久538| 女人一区二区三区| 亚洲色图欧美在线| 小黄网站在线观看| 99视频一区二区| 国产精品一区二区久久精品爱涩| 国产精品爽爽久久久久久豆腐| 国产污视频在线看| 久草天堂| 久久久97| 怡红院综合网| 欧美人与动牲交xxxxbbbb| 国产欧美在线观看| 浪潮av色| 综合亚洲欧美| 精品一区二区三区免费视频| japanese在线视频| 中文在线中文a| av私库| 免费日韩一区| 中文av影院| 日本一级一片免费视频| 久久久一区二区三区电影| 诱人的乳峰奶水hd| 欧美激情视频免费观看| 湿妹子影院| 久久久久久久91| 香蕉久草视频| 一级片免费网址| 色综合天天射| 青草精品在线| 国产a精品视频| 久久鲁视频| 不卡的一区二区| 在线日韩一区二区| av永久免费在线观看| 超碰97免费| 水蜜桃一二三区| 亚洲欧洲av在线| 久久精品一区二区免费播放| 日韩国产成人无码av毛片| 呦呦色| 一区二区韩国| 亚洲欧美另类色图| 99热成人精品热久久66| 日本一道本在线| 看片一区二区| 天堂а在线中文在线新版| 私人影院毛片| 草草影院国产第一页| 国产精品久久久久久久久久免| xxxww日本| 韩日精品在线| 国内激情自拍| 久久伊人五月天| 亚洲精品白浆| 熟女精品一区二区| 91小宝寻花一区二区三区| 五月开心播播网| 91精品国产乱码久久久竹菊| 欧美办公室高跟放荡xxx| 日韩城人视频| 黄色大片子| 国产第一页av| 国产福利一区视频| 成片在线观看| 超碰95在线| 久久国产精品一区| 日韩黄色录像| 365夜爽爽欧美性午夜免费视频91大片| 欧美成人三级视频| 欧美精品一区二区三区久久久| 怡红院成永久免费人全部视频| 友田真希av在线| 国产伦精一区二区三区| 午夜电影网一区| 日韩理论在线观看| 色xxxx| 黄色喷水视频| 高跟肉丝丝袜呻吟啪啪网站av| 色婷婷中文字幕| 成人1区2区| 日本v视频| 久久高清内射无套| 欧美在线影院| 婷婷天天| av手机在线电影| 成人春色激情网| 亚洲永久免费| 少妇无码一区二区三区| 黄色中文字幕在线观看| 国产又粗又长又黄的视频| 午夜一区在线观看| 手机av永久免费| 天天爽夜夜爽夜夜爽| 亚洲精品欧洲| 日日操天天操| 刘亦菲毛片| 亚洲春色奇米影视| 日韩精品一区二区三区在线视频| 交专区videossex农村| 国产在线观看18| 天天综合天天操| 日韩精品成人在线观看| 亚洲图片另类小说| 青青草一区二区|