成人资源站I久久夜色精品国产I永久免费精品影视网站I涩涩久久I午夜福利电影I国产一区二区三区久久久久久久久I欧美一区二区视频在线I欧美jizzhd精品欧美性24I在线免费黄色I污在线观看I免费精品视频一区二区I射射avI国产99爱I欧美一卡二卡在线观看I国产伊人avI艳妇臀荡乳欲伦交换电影I少妇真人直播免费视频I免费黄色小视频I免费成人小视频I无码一区二区三区在线

濰坊華光高科電子有限公司 WEIFANG HUAGUANG HIGH-TECH CO.,LTD.
全國服務熱線:0536-8222888
脈沖寬度調制
來源:華光高科 時間:2013/8/5 7:08:07 點擊: 


    脈沖寬度調制是一種模擬控制方式,其根據相應載荷的變化來調制晶體管柵極或基極的偏置,來實現開關穩壓電源輸出晶 體管或晶體管導通時間的改變,這種方式能使電源的輸出電壓在工作條件變化時保持恒定,是利用微處理器的數字輸出來對模擬電路進行控制的一種非常有效的技術。
  PWM控制技術以其控制簡單,靈活和動態響應好的優點而成為電力電子技術最廣泛應用的控制方式,也是人們研究的熱點.由于當今科學技術的發展已經沒有了學科之間的界限,結合現代控制理論思想或實現無諧振軟開關技術將會成為PWM控制技術發展的主要方向之一。
一、脈沖寬度調制基本原理
  隨著電子技術的發展,出現了多種PWM技術,其中包括:相電壓控制PWM、脈寬PWM法、隨機PWM、SPWM法、線電壓控制PWM等,而在鎳氫電池智能充電器中采用的脈寬PWM法,它是把每一脈沖寬度均相等的脈沖列作為PWM波形,通過改變脈沖列的周期可以調頻,改變脈沖的寬度或占空比可以調壓,采用適當控制方法即可使電壓與頻率協調變化。可以通過調整PWM的周期、PWM的占空比而達到控制充電電流的目的。
  模擬信號的值可以連續變化,其時間和幅度的分辨率都沒有限制。9V電池就是一種模擬器件,因為它的輸出電壓并不精確地等于9V,而是隨時間發生變化,并可取任何實數值。與此類似,從電池吸收的電流也不限定在一組可能的取值范圍之內。模擬信號與數字信號的區別在于后者的取值通常只能屬于預先確定的可能取值集合之內,例如在{0V, 5V}這一集合中取值。
  模擬電壓和電流可直接用來進行控制,如對汽車收音機的音量進行控制。在簡單的模擬收音機中,音量旋鈕被連接到一個可變電阻。擰動旋鈕時,電阻值變大或變小;流經這個電阻的電流也隨之增加或減少,從而改變了驅動揚聲器的電流值,使音量相應變大或變小。與收音機一樣,模擬電路的輸出與輸入成線性比例。
  盡管模擬控制看起來可能直觀而簡單,但它并不總是非常經濟或可行的。其中一點就是,模擬電路容易隨時間漂移,因而難以調節。能夠解決這個問題的精密模擬電路可能非常龐大、笨重(如老式的家庭立體聲設備)和昂貴。模擬電路還有可能嚴重發熱,其功耗相對于工作元件兩端電壓與電流的乘積成正比。模擬電路還可能對噪聲很敏感,任何擾動或噪聲都肯定會改變電流值的大小。
  通過以數字方式控制模擬電路,可以大幅度降低系統的成本和功耗。此外,許多微控制器和DSP已經在芯片上包含了PWM控制器,這使數字控制的實現變得更加容易了。
二、脈沖寬度調制具體過程
  脈沖寬度調制(PWM)是一種對模擬信號電平進行數字編碼的方法。通過高分辨率計數器的使用,方波占空比調制用來對一個具體模擬信號的電平進行編碼。PWM信號仍然是數字的,因為在給定的任何時刻,滿幅值的直流供電要么完全有(ON),要么完全無(OFF)。電壓或電流源是以一種通(ON)或斷(OFF)的重復脈沖序列被加到模擬負載上去的。通的時候即是直流供電被加到負載上的時候,斷的時候即是供電被斷開的時候。只要帶寬足夠,任何模擬值都可以使用PWM進行編碼。
  多數負載(無論是電感性負載還是電容性負載)需要的調制頻率高于10Hz,通常調制頻率為1kHz到200kHz之間。
  許多微控制器內部都包含有PWM控制器。例如,Microchip公司的PIC16C67內含兩個PWM控制器,每一個都可以選擇接通時間和周期。占空比是接通時間與周期之比;調制頻率為周期的倒數。執行PWM操作之前,這種微處理器要求在軟件中完成以下工作:
  1、設置提供調制方波的片上定時器/計數器的周期
  2、 在PWM控制寄存器中設置接通時間
  3、設置PWM輸出的方向,這個輸出是一個通用I/O管腳
  4、啟動定時器
  5、使能PWM控制器
三、脈沖寬度調制的優點
  PWM的一個優點是從處理器到被控系統信號都是數字形式的,無需進行數模轉換。讓信號保持為數字形式可將噪聲影響降到最小。噪聲只有在強到足以將邏輯1改變為邏輯0或將邏輯0改變為邏輯1時,也才能對數字信號產生影響。
  對噪聲抵抗能力的增強是PWM相對于模擬控制的另外一個優點,而且這也是在某些時候將PWM用于通信的主要原因。從模擬信號轉向PWM可以極大地延長通信距離。在接收端,通過適當的RC或LC網絡可以濾除調制高頻方波并將信號還原為模擬形式。
  總之,PWM既經濟、節約空間、抗噪性能強,是一種值得廣大工程師在許多設計應用中使用的有效技術。
四、脈沖寬度調制控制方法
  采樣控制理論中有一個重要結論:沖量相等而形狀不同的窄脈沖加在具有慣性的環節上時,其效果基本相同.PWM控制技術就是以該結論為理論基礎,對半導體開關器件的導通和關斷進行控制,使輸出端得到一系列幅值相等而寬度不相等的脈沖,用這些脈沖來代替正弦波或其他所需要的波形.按一定的規則對各脈沖的寬度進行調制,既可改變逆變電路輸出電壓的大小,也可改變輸出頻率.
  PWM控制的基本原理很早就已經提出,但是受電力電子器件發展水平的制約,在上世紀80年代以前一直未能實現.直到進入上世紀80年代,隨著全控型電力電子器件的出現和迅速發展,PWM控制技術才真正得到應用.隨著電力電子技術,微電子技術和自動控制技術的發展以及各種新的理論方法,如現代控制理論,非線性系統控制思想的應用,PWM控制技術獲得了空前的發展.到目前為止,已出現了多種PWM控制技術,根據PWM控制技術的特點,到目前為止主要有以下8類方法.
4.1、相電壓控制PWM
  4.1.1 等脈寬PWM[1]
  VVVF(Variable Voltage Variable Frequency)裝置在早期是采用PAM(Pulse Amplitude Modulation)控制技術來實現的,其逆變器部分只能輸出頻率可調的方波電壓而不能調壓.等脈寬PWM法正是為了克服PAM法的這個缺點發展而來的,是PWM法中最為簡單的一種.它是把每一脈沖的寬度均相等的脈沖列作為PWM波,通過改變脈沖列的周期可以調頻,改變脈沖的寬度或占空比可以調壓,采用適當控制方法即可使電壓與頻率協調變化.相對于PAM法,該方法的優點是簡化了電路結構,提高了輸入端的功率因數,但同時也存在輸出電壓中除基波外,還包含較大的諧波分量.
  4.1.2、隨機PWM
  在上世紀70年代開始至上世紀80年代初,由于當時大功率晶體管主要為雙極性達林頓三極管,載波頻率一般不超過5kHz,電機繞組的電磁噪音及諧波造成的振動引起了人們的關注.為求得改善,隨機PWM方法應運而生.其原理是隨機改變開關頻率使電機電磁噪音近似為限帶白噪聲(在線性頻率坐標系中,各頻率能量分布是均勻的),盡管噪音的總分貝數未變,但以固定開關頻率為特征的有色噪音強度大大削弱.正因為如此,即使在IGBT已被廣泛應用的今天,對于載波頻率必須限制在較低頻率的場合,隨機PWM仍然有其特殊的價值;另一方面則說明了消除機械和電磁噪音的最佳方法不是盲目地提高工作頻率,隨機PWM技術正是提供了一個分析,解決這種問題的全新思路.
  4.1.3SPWM
  SPWM(Sinusoidal PWM)法是一種比較成熟的,目前使用較廣泛的PWM法.前面提到的采樣控制理論中的一個重要結論:沖量相等而形狀不同的窄脈沖加在具有慣性的環節上時,其效果基本相同.SPWM法就是以該結論為理論基礎,用脈沖寬度按正弦規律變化而和正弦波等效的PWM波形即SPWM波形控制逆變電路中開關器件的通斷,使其輸出的脈沖電壓的面積與所希望輸出的正弦波在相應區間內的面積相等,通過改變調制波的頻率和幅值則可調節逆變電路輸出電壓的頻率和幅值.該方法的實現有以下幾種方案.
  4.1.3.1、等面積法
  該方案實際上就是SPWM法原理的直接闡釋,用同樣數量的等幅而不等寬的矩形脈沖序列代替正弦波,然后計算各脈沖的寬度和間隔,并把這些數據存于微機中,通過查表的方式生成PWM信號控制開關器件的通斷,以達到預期的目的.由于此方法是以SPWM控制的基本原理為出發點,可以準確地計算出各開關器件的通斷時刻,其所得的的波形很接近正弦波,但其存在計算繁瑣,數據占用內存大,不能實時控制的缺點.
  4.1.3.2、硬件調制法
  硬件調制法是為解決等面積法計算繁瑣的缺點而提出的,其原理就是把所希望的波形作為調制信號,把接受調制的信號作為載波,通過對載波的調制得到所期望的PWM波形.通常采用等腰三角波作為載波,當調制信號波為正弦波時,所得到的就是SPWM波形.其實現方法簡單,可以用模擬電路構成三角波載波和正弦調制波發生電路,用比較器來確定它們的交點,在交點時刻對開關器件的通斷進行控制,就可以生成SPWM波.但是,這種模擬電路結構復雜,難以實現精確的控制.
  4.1.3.3、軟件生成法
  由于微機技術的發展使得用軟件生成SPWM波形變得比較容易,因此,軟件生成法也就應運而生.軟件生成法其實就是用軟件來實現調制的方法,其有兩種基本算法,即自然采樣法和規則采樣法.
  4.1.3.3.1、自然采樣法[2]
  以正弦波為調制波,等腰三角波為載波進行比較,在兩個波形的自然交點時刻控制開關器件的通斷,這就是自然采樣法.其優點是所得SPWM波形最接近正弦波,但由于三角波與正弦波交點有任意性,脈沖中心在一個周期內不等距,從而脈寬表達式是一個超越方程,計算繁瑣,難以實時控制.
  4.1.3.3.2、規則采樣法[3]
  規則采樣法是一種應用較廣的工程實用方法,一般采用三角波作為載波.其原理就是用三角波對正弦波進行采樣得到階梯波,再以階梯波與三角波的交點時刻控制開關器件的通斷,從而實現SPWM法.當三角波只在其頂點(或底點)位置對正弦波進行采樣時,由階梯波與三角波的交點所確定的脈寬,在一個載波周期(即采樣周期)內的位置是對稱的,這種方法稱為對稱規則采樣.當三角波既在其頂點又在底點時刻對正弦波進行采樣時,由階梯波與三角波的交點所確定的脈寬,在一個載波周期(此時為采樣周期的兩倍)內的位置一般并不對稱,這種方法稱為非對稱規則采樣.
  規則采樣法是對自然采樣法的改進,其主要優點就是是計算簡單,便于在線實時運算,其中非對稱規則采樣法因階數多而更接近正弦.其缺點是直流電壓利用率較低,線性控制范圍較小.
  以上兩種方法均只適用于同步調制方式中.
  4.1.3.4、低次諧波消去法[2]
  低次諧波消去法是以消去PWM波形中某些主要的低次諧波為目的的方法.其原理是對輸出電壓波形按傅氏級數展開,表示為u(ωt)=ansinnωt,首先確定基波分量a1的值,再令兩個不同的an=0,就可以建立三個方程,聯立求解得a1,a2及a3,這樣就可以消去兩個頻率的諧波.
  該方法雖然可以很好地消除所指定的低次諧波,但是,剩余未消去的較低次諧波的幅值可能會相當大,而且同樣存在計算復雜的缺點.該方法同樣只適用于同步調制方式中.
  4.1.4、梯形波與三角波比較法[2]
  前面所介紹的各種方法主要是以輸出波形盡量接近正弦波為目的,從而忽視了直流電壓的利用率,如SPWM法,其直流電壓利用率僅為86.6%.因此,為了提高直流電壓利用率,提出了一種新的方法--梯形波與三角波比較法.該方法是采用梯形波作為調制信號,三角波為載波,且使兩波幅值相等,以兩波的交點時刻控制開關器件的通斷實現PWM控制.
  由于當梯形波幅值和三角波幅值相等時,其所含的基波分量幅值已超過了三角波幅值,從而可以有效地提高直流電壓利用率.但由于梯形波本身含有低次諧波,所以輸出波形中含有5次,7次等低次諧波.
4.2、線電壓控制PWM
   前面所介紹的各種PWM控制方法用于三相逆變電路時,都是對三相輸出相電壓分別進行控制的,使其輸出接近正弦波,但是,對于像三相異步電動機這樣的三相無中線對稱負載,逆變器輸出不必追求相電壓接近正弦,而可著眼于使線電壓趨于正弦.因此,提出了線電壓控制PWM,主要有以下兩種方法.
  4.2.1、馬鞍形波與三角波比較法
  馬鞍形波與三角波比較法也就是諧波注入PWM方式(HIPWM),其原理是在正弦波中加入一定比例的三次諧波,調制信號便呈現出馬鞍形,而且幅值明顯降低,于是在調制信號的幅值不超過載波幅值的情況下,可以使基波幅值超過三角波幅值,提高了直流電壓利用率.在三相無中線系統中,由于三次諧波電流無通路,所以三個線電壓和線電流中均不含三次諧波[4].
  除了可以注入三次諧波以外,還可以注入其他3倍頻于正弦波信號的其他波形,這些信號都不會影響線
  電壓.這是因為,經過PWM調制后逆變電路輸出的相電壓也必然包含相應的3倍頻于正弦波信號的諧波,但在合成線電壓時,各相電壓中的這些諧波將互相抵消,從而使線電壓仍為正弦波.
  4.2.2、單元脈寬調制法[5]
  因為,三相對稱線電壓有Uuv+Uvw+Uwu=0的關系,所以,某一線電壓任何時刻都等于另外兩個線電壓負值之和.現在把一個周期等分為6個區間,每區間60°,對于某一線電壓例如Uuv,半個周期兩邊60°區間用Uuv本身表示,中間60°區間用-(Uvw+Uwu)表示,當將Uvw和Uwu作同樣處理時,就可以得到三相線電壓波形只有半周內兩邊60°區間的兩種波形形狀,并且有正有負.把這樣的電壓波形作為脈寬調制的參考信號,載波仍用三角波,并把各區間的曲線用直線近似(實踐表明,這樣做引起的誤差不大,完全可行),就可以得到線電壓的脈沖波形,該波形是完全對稱,且規律性很強,負半周是正半周相應脈沖列的反相,因此,只要半個周期兩邊60°區間的脈沖列一經確定,線電壓的調制脈沖波形就唯一地確定了.這個脈沖并不是開關器件的驅動脈沖信號,但由于已知三相線電壓的脈沖工作模式,就可以確定開關器件的驅動脈沖信號了.
  該方法不僅能抑制較多的低次諧波,還可減小開關損耗和加寬線性控制區,同時還能帶來用微機控制的方便,但該方法只適用于異步電動機,應用范圍較小.
4.3、電流控制PWM
  電流控制PWM的基本思想是把希望輸出的電流波形作為指令信號,把實際的電流波形作為反饋信號,通過兩者瞬時值的比較來決定各開關器件的通斷,使實際輸出隨指令信號的改變而改變.其實現方案主要有以下3種.
  4.3.1、滯環比較法[4]
  這是一種帶反饋的PWM控制方式,即每相電流反饋回來與電流給定值經滯環比較器,得出相應橋臂開關器件的開關狀態,使得實際電流跟蹤給定電流的變化.該方法的優點是電路簡單,動態性能好,輸出電壓不含特定頻率的諧波分量.其缺點是開關頻率不固定造成較為嚴重的噪音,和其他方法相比,在同一開關頻率下輸出電流中所含的諧波較多.
  4.3.2、三角波比較法[2]
  該方法與SPWM法中的三角波比較方式不同,這里是把指令電流與實際輸出電流進行比較,求出偏差電流,通過放大器放大后再和三角波進行比較,產生PWM波.此時開關頻率一定,因而克服了滯環比較法頻率不固定的缺點.但是,這種方式電流響應不如滯環比較法快.
  4.3.3、預測電流控制法[6]
  預測電流控制是在每個調節周期開始時,根據實際電流誤差,負載參數及其它負載變量,來預測電流誤差矢量趨勢,因此,下一個調節周期由PWM產生的電壓矢量必將減小所預測的誤差.該方法的優點是,若給調節器除誤差外更多的信息,則可獲得比較快速,準確的響應.目前,這類調節器的局限性是響應速度及過程模型系數參數的準確性.
4.4、空間電壓矢量控制PWM [7]
   空間電壓矢量控制PWM(SVPWM)也叫磁通正弦PWM法.它以三相波形整體生成效果為前提,以逼近電機氣隙的理想圓形旋轉磁場軌跡為目的,用逆變器不同的開關模式所產生的實際磁通去逼近基準圓磁通,由它們的比較結果決定逆變器的開關,形成PWM波形.此法從電動機的角度出發,把逆變器和電機看作一個整體,以內切多邊形逼近圓的方式進行控制,使電機獲得幅值恒定的圓形磁場(正弦磁通).
  具體方法又分為磁通開環式和磁通閉環式.磁通開環法用兩個非零矢量和一個零矢量合成一個等效的電壓矢量,若采樣時間足夠小,可合成任意電壓矢量.此法輸出電壓比正弦波調制時提高15%,諧波電流有效值之和接近最小.磁通閉環式引
  入磁通反饋,控制磁通的大小和變化的速度.在比較估算磁通和給定磁通后,根據誤差決定產生下一個電壓矢量,形成PWM波形.這種方法克服了磁通開環法的不足,解決了電機低速時,定子電阻影響大的問題,減小了電機的脈動和噪音.但由于未引入轉矩的調節,系統性能沒有得到根本性的改善.
4.5、矢量控制PWM[8]
   矢量控制也稱磁場定向控制,其原理是將異步電動機在三相坐標系下的定子電流Ia,Ib及Ic,通過三相/二相變換,等效成兩相靜止坐標系下的交流電流Ia1及Ib1,再通過按轉子磁場定向旋轉變換,等效成同步旋轉坐標系下的直流電流Im1及It1(Im1相當于直流電動機的勵磁電流;It1相當于與轉矩成正比的電樞電流),然后模仿對直流電動機的控制方法,實現對交流電動機的控制.其實質是將交流電動機等效為直流電動機,分別對速度,磁場兩個分量進行獨立控制.通過控制轉子磁鏈,然后分解定子電流而獲得轉矩和磁場兩個分量,經坐標變換,實現正交或解耦控制.
  但是,由于轉子磁鏈難以準確觀測,以及矢量變換的復雜性,使得實際控制效果往往難以達到理論分析的效果,這是矢量控制技術在實踐上的不足.此外.它必須直接或間接地得到轉子磁鏈在空間上的位置才能實現定子電流解耦控制,在這種矢量控制系統中需要配置轉子位置或速度傳感器,這顯然給許多應用場合帶來不便.
4.6、直接轉矩控制PWM[8]
   1985年德國魯爾大學Depenbrock教授首先提出直接轉矩控制理論(Direct Torque Control簡稱DTC).直接轉矩控制與矢量控制不同,它不是通過控制電流,磁鏈等量來間接控制轉矩,而是把轉矩直接作為被控量來控制,它也不需要解耦電機模型,而是在靜止的坐標系中計算電機磁通和轉矩的實際值,然后,經磁鏈和轉矩的Band-Band控制產生PWM信號對逆變器的開關狀態進行最佳控制,從而在很大程度上解決了上述矢量控制的不足,能方便地實現無速度傳感器化,有很快的轉矩響應速度和很高的速度及轉矩控制精度,并以新穎的控制思想,簡潔明了的系統結構,優良的動靜態性能得到了迅速發展.
  但直接轉矩控制也存在缺點,如逆變器開關頻率的提高有限制.
4.7、非線性控制PWM
   單周控制法[7]又稱積分復位控制(Integration Reset Control,簡稱IRC),是一種新型非線性控制技術,其基本思想是控制開關占空比,在每個周期使開關變量的平均值與控制參考電壓相等或成一定比例.該技術同時具有調制和控制的雙重性,通過復位開關,積分器,觸發電路,比較器達到跟蹤指令信號的目的.單周控制器由控制器,比較器,積分器及時鐘組成,其中控制器可以是RS觸發器,其控制原理如圖1所示.圖中K可以是任何物理開關,也可是其它可轉化為開關變量形式的抽象信號.
  單周控制在控制電路中不需要誤差綜合,它能在一個周期內自動消除穩態,瞬態誤差,使前一周期的誤差不會帶到下一周期.雖然硬件電路較復雜,但其克服了傳統的PWM控制方法的不足,適用于各種脈寬調制軟開關逆變器,具有反應快,開關頻率恒定,魯棒性強等優點,此外,單周控制還能優化系統響應,減小畸變和抑制電源干擾,是一種很有前途的控制方法.
4.8、諧振軟開關PWM
  傳統的PWM逆變電路中,電力電子開關器件硬開關的工作方式,大的開關電壓電流應力以及高的du/dt和di/dt限制了開關器件工作頻率的提高,而高頻化是電力電子主要發展趨勢之一,它能使變換器體積減小,重量減輕,成本下降,性能提高,特別當開關頻率在18kHz以上時,噪聲將已超過人類聽覺范圍,使無噪聲傳動系統成為可能.
  諧振軟開關PWM的基本思想是在常規PWM變換器拓撲的基礎上,附加一個諧振網絡,諧振網絡一般由諧振電感,諧振電容和功率開關組成.開關轉換時,諧振網絡工作使電力電子器件在開關點上實現軟開關過程,諧振過程極短,基本不影響PWM技術的實現.從而既保持了PWM技術的特點,又實現了軟開關技術.但由于諧振網絡在電路中的存在必然會產生諧振損耗,并使電路受固有問題的影響,從而限制了該方法的應用。
五、脈沖寬度調制相關應用領域
  PWM控制技術主要應用在電力電子技術行業,具體講,包括風力發電、電機調速、直流供電等領域,由于其四象限變流的特點,可以反饋再生制動的能量,對于目前國家提出的節能減排具有積極意義。
六、脈沖寬度調制技術的具體應用
  脈寬調制PWM是開關型穩壓電源中的術語。這是按穩壓的控制方式分類的,除了PWM型,還有PFM型和PWM、PFM混合型。脈寬寬度調制式(PWM)開關型穩壓電路是在控制電路輸出頻率不變的情況下,通過電壓反饋調整其占空比,從而達到穩定輸出電壓的目的。
6.1、PWM軟件法控制充電電流
  本方法的基本思想就是利用單片機具有的PWM端口,在不改變PWM方波周期的前提下,通過軟件的方法調整單片機的PWM控制寄存器來調整PWM的占空比,從而控制充電電流。本方法所要求的單片機必須具有ADC端口和PWM端口這兩個必須條件,另外ADC的位數盡量高,單片機的工作速度盡量快。在調整充電電流前,單片機先快速讀取充電電流的大小,然后把設定的充電電流與實際讀取到的充電電流進行比較,若實際電流偏小則向增加充電電流的方向調整PWM的占空比;若實際電流偏大則向減小充電電流的方向調整PWM的占空比。在軟件PWM的調整過程中要注意ADC的讀數偏差和電源工作電壓等引入的紋波干擾,合理采用算術平均法等數字濾波技術。
6.2 PWM在推力調制中的應用
  1962年,Nicklas等提出了脈沖調制理論,指出利用噴氣脈沖對航天器控制是簡單有效的控制方案,同時能使時間或能量達到最優控制。
  脈寬調制發動機控制方式是在每一個脈動周期內,通過改變閥門在開或關位置上停留的時間來改變流經閥門的氣體流量,從而改變總的推力效果,對于質量流率不變的系統,可以通過脈寬調制技術來獲得變推力的效果。
  脈寬調制通常有兩種方法[15]:第一種為整體脈寬調制,對控制對象進行控制器設計,并根據控制要求的作用力大小,對整個系統模型進行動態的數學解算變換,得出固定力輸出應該持續作用的時間和開始作用時間;第二種為脈寬調制器,不考慮控制對象模型,而是根據輸入進行“動態衰減”性的累加,然后經過某種算法變換后,決定輸出所持續的時間。這種方式非常簡單,也能達到輸出作用近似相同。
  脈寬調制控制技術結構簡單、易于實現、技術比較成熟,俄羅斯已經將其成功地應用于遠程火箭的角度穩定系統控制中。但是當調制量為零時,正反向的控制作用相互抵消,控制效率明顯比變流率系統低。而且系統響應有一定的滯后,其開關的頻率必須遠大于KKV本身的固有頻率,否則不但起不到調制效果,甚至會發生災難性后果。

 



[ 關鍵詞:脈沖寬度調制|脈沖寬度調制基本原理|脈沖寬度調制具體過程|脈沖寬度調制的優點|沖寬度調制控制方法]
【版權聲明】 【返回首頁】 【發表評論- 【打印頁面】 【關閉頁面】 【TOP】
版權:山東濰坊華光高科電子有限公司 2002-2029 魯ICP備09032618號-5 網站地圖隱私保護法律公告聯系我們網站管理
網址:www.wfhg.com.cn 電話:0536-8222888 8236921 手機:13806491159
地址:山東省濰坊市奎文區濰州路1088號(華光高科總部) 郵編:261041
三用表檢定裝置多用表校準儀三表校準儀多功能標準源鉗形表檢定裝置多用表檢定裝置多用表校正儀多功能校準源多功能校準器電三表校驗儀三表校驗儀
萬用表檢定裝置萬用表校準儀三用表校準儀鉗形表校準儀鉗形表校驗儀多用表校準儀多用表校驗儀多功能校準儀多功能校驗儀萬用表校驗儀三用表校驗儀
DO30 ┆┆DO30-2┆┆DO30-3 ┆┆DO30-3A┆┆DO30-D ┆┆DO30-IIB┆┆DO30-Q ┆┆DO3020A┆┆DO30B-2 ┆┆DO30A┆┆DO3020W ┆┆DO30-VI┆┆DO30-E ┆┆NM3000┆┆NM5200 ┆┆NM3200┆┆NM5600
供求信息
HG30 ┆┆HG30-IIB┆┆HG30-3 ┆┆HG3020A┆┆HG30-Q ┆┆HG30-3A┆┆HG30A-2 ┆┆HG30A-1┆┆HG5520A ┆┆HG30-VI┆┆
XF30 ┆┆XF30A┆┆XF30A-1 ┆┆XF30A-2┆┆XF30A-3┆┆XF30DQ┆┆XF30-IIA ┆┆XF30B-2┆┆
┆ ┆
在線客服
主站蜘蛛池模板: 第九色综合| 九九夜| 无遮挡毛片| 四虎免费视频| 色呦呦国产精品| 欧美日韩综合一区二区三区| 破处视频网站| 天天舔天天干天天操| 中国老太婆性做爰| 俄罗斯av片| 欧美性xxxx图片| 久久久精品国产sm调教| 国产91在线亚洲| 久久亚洲精品大全| 日色网站| a级黄色小视频| 一级黄色大毛片| 午夜影院普通用户体验区| aaaa黄色| 天天干天天做天天操| 亚洲久久一区二区| 成人av网站在线| 午夜拍拍视频| 一级特黄肉体裸片| se婷婷| 欧美熟妇一区二区| 91影院在线| 日韩精品人妻一区| 日韩欧美国产片| 在线观看中文av| 国产亚洲成人av| 精品亚洲一区二区三区| 黄色资源网站| 免费看av在线| 77久久| 美女操出白浆| 亚洲经典中文字幕| 国产乱来| www.jizz国产| 日韩中出在线| 手机免费av在线| 天天躁日日躁狠狠躁免费麻豆| a级免费片| 无码人妻一区二区三区在线| 国产露脸xxⅹ69| 久久久久高清| 日韩欧美天堂| 亚洲一区二区三区色| 短视频在线观看| 精品一级| 天天射日| 波多野结衣小视频| 波多野结衣av电影| 久久人人插| 一本大道区一区二区三乱码八| 久久久久国产精品一区二区| 樱花视频在线免费观看| 日本黄色一级网站| 九热精品| 超碰日本| 成人午夜视频在线| 91人人视频| www.youjizz.com中国| 亚洲综合成人av| 色噜噜在线| 国产中文字幕久久| 天天操夜夜爱| 黄色av小说| 日韩欧美黄色网址| 一本色道久久综合亚洲二区三区| 激情五月在线| 欧美激情3p| 免费黄色网址大全| 一区二区三区在线观看| 欧美九九| 欧美亚洲xxx| 欧美三级午夜理伦三级| av成人毛片| 亚洲欧美日韩国产综合| 午夜黄视频| 91精品在线观看入口| 国产三级在线| 日韩在线观看av| 午夜在线播放| 99久久精品免费看国产交换| 日韩女同一区二区三区| 一区二区蜜桃| 国产一区在线观看免费| 亚洲欧美精品一区| 欧美极品少妇×xxxbbb| 亚洲欧美黄| 国产美女明星三级做爰| 国产精品xxxx喷水欧美| 久久1234| 小草av| 国产第一av| 欧美亚洲国产精品| 中韩毛片| 国产综合av| 99在线观看免费| 四虎免费久久| 宅男av| 国产成人精品一区二三区| 污色视频| 免费性情网站| 婷婷丁香九月| 国产一区精品在线观看| 日本呦呦| 少妇久久久久久被弄高潮| 国内久久精品| 国产精品97| 久艹视频在线| 波多野结衣视频免费| 亚洲国产精品尤物yw在线观看| 亚洲高清视频在线观看免费| 日韩一级片免费看| 亚洲干| 一级特黄aaa大片| 日本一区二区久久| 91入囗| 巨乳在线播放| 亚洲第一色站| 狠狠涩| 久久免费香蕉视频| 激情a| 涩涩97| 长河落日电视连续剧免费观看| 黑人玩弄人妻一区二区三区免费看| 久久国产高清| 国产孕妇视频| 在线播放少妇奶水过盛| 欧美日韩精品一区二区三区蜜桃| 欧美日韩综合在线| 黄色片久久久久| 人人爽人人爽人人片av| 香港三级日本三级韩国三级| 婷婷中文字幕在线| 99小视频| 91久久色| 免费av网页| 国产女人18毛片| 特级做a爱片久| 国产精品96久久久久久又黄又硬| 无码精品人妻一区二区三区漫画 | 天天干天天草| 都市激情国产精品| 美女av一区二区| 欧美日韩综合| 欧美国产高清| 久久久久高潮| 大桥未久av一区二区三区中文| 欧美xxxx吸乳| 香蕉国产在线视频| 精品久久国产字幕高潮| 亚洲成人套图| 亚洲高清资源| 欧美做爰全过程免费看| 亚州三级| 亚洲v区| 久久久久亚洲av成人毛片韩| 男人插入女人下面的视频| 日韩精品1区| 91精品系列| 国产精品另类| 欧美福利一区二区| 日本午夜三级| 亚洲一二三四区| 天堂网wwww| 欧美一二区视频| 女人下边被添全过视频| 国产日产精品一区二区三区| www.桃色| 久久国语精品| 欧美第一页码| 免费观看av| 97超碰在线资源| 91午夜精品| 一级黄色理论片| 日本视频精品| 黑人巨大精品欧美一区二区蜜桃| 男人天堂v| 欧美精品hd| 久久国产高清| 久久精品视频在线免费观看| 主播av在线| 欧美三级小说| 久久国产这里只有精品| 妻子的性幻想| 岳两女共夫互换观看视频| 久久国产热视频| 国产网站黄色| xxxx.国产| 色婷婷久久五月综合成人| 天天操国产| 免费v片在线观看| www在线免费观看| 国产在线观看免费av| 久久精品视频免费| av一区免费| 69av在线播放| 91社在线播放| 97在线免费视频| 天天综合日韩| 国产精品99久久久久| 女的高潮流时喷水图片大全| 欧洲色综合| 免费欧美黄色| 欧美情趣视频| 国产成人综合自拍| 西西午夜视频| 国产污视频在线| 宅男噜噜噜| 亚洲精品456在线播放| 天堂视频免费在线观看| 国产精品影片| 狠狠干中文字幕| 美女av片| 国产黄色片久久| 成人瑟瑟视频| 国产高潮在线| 又嫩又硬又黄又爽的视频| 亚洲天堂2012| 日韩jizz| 成年人在线观看网站| 国产精品国产精品不卡| 风间由美一区| 奇米一区二区| 国产suv精品一区二区883| 国产日韩欧美精品在线| 久久国产情侣| 日韩精品色呦呦| 亚洲欧美另类一区| 999久久久久| 免费黄色a| 国产 欧美 日本| 亚洲色欧美另类| 欧美特黄色片| 黑丝啪啪| 亚洲精品9999| 特级特黄aaaa免费看| 成人av福利| 爱射影院| 久久黄色精品视频| 国产成人三级在线观看视频| 日韩av福利在线观看| 三级网站免费| 玖玖玖国产精品| 欧美日韩精品亚洲精品| 艳妇乳肉豪妇荡乳| 在线色网址| 亚洲熟色妇| 国产午夜激情| 男生女生搞鸡视频| 久久97| 欧美zzz物交| 四虎永久影院| 久久av网站| 日韩特黄毛片| 精品日韩三级| 欧美伦理在线观看| 亚洲v在线| 91最新中文字幕| 精品视频一区二区在线| 在线婷婷| 国产一区二区视频在线播放| 综合久久久久久| 不卡的免费av| 国产精品一级无码| 中国极品美軳人人体图片| 夜夜摸夜夜操| 91超碰在| 少妇高潮伦| 亚洲深爱激情| aaaa黄色片| 国产制服一区| 日本视频中文字幕| 青春草在线视频观看| 欧美bdsm调教视频| www男人的天堂| 哺乳期给上司喂奶hd| 不卡av免费观看| 久久精品66| 最近国语视频在线观看免费播放| av影库| 国产人妖一区二区| 国产色在线,com| 国产一级二级三级视频| 日韩黄色片免费看| 婷婷激情六月| 国产无遮挡猛进猛出免费软件| 人妻少妇被粗大爽9797pw| av资源吧首页| 高清中文字幕av| 肥臀av| 国产男女无套| 国产亚洲欧美一区二区三区| av中文字幕免费| 欧美在线另类| 1024国产视频| 久久羞羞| 国产69视频在线观看| 欧美中文字幕在线| 亚洲国产精品视频在线| 动漫美女无遮挡免费| 女人天堂网av| 久久成人麻豆午夜电影| 伦理片av| 日本精品视频在线观看| 亚洲伦理一区| 久久国内偷拍| 天天综合成人网| 成人av一二三| 免费a大片| 久久aaaa片一区二区| 成人午夜影院| 日韩专区av| 成人自拍视频网站| 在线麻豆视频| 500部大龄熟乱视频| 少妇人禽zoz0伦视频| 亚洲综合蜜臀av| 色综合久久久久久久久五月| www日本色| 香蕉视频一级| 北条麻妃av在线| 日韩永久免费| 欧美视频一区| 在线国产黄色| 色播视频在线观看| 欧美一级二级三级| 青青青手机视频在线观看| 青青青视频免费| 国产嫩草影院久久久久| 欧美激情亚洲综合| 久久15p| 青青精品| 2019毛片| 91久久精品国产91久久| 欧美日韩一区二区三区四区五区| 91在线观看免费| 国产精品电影网站| 神马久久春色| 黄wwwww| 久久超碰99| 秋葵视频成人| 在线观看日韩av电影| 亚洲免费在线视频观看| 一级片av| 欧美成人一级片| 久久77777| 欧美成人国产va精品日本一级| 一级黄色毛毛片| 日韩欧美毛片| 中国黄色影片| 国产黄色小视频在线观看| 午夜激情网址| 欧美激情综合在线| 日日韩韩| 扒丝袜| 国产精品久久久一区二区三区| 网站黄在线| av乱码| 黄色网址大全免费| 草棚caopo丫n在线视频 | 亚洲欧洲日韩综合| 鸥美毛片| 陪读偷伦初尝小说| 亚洲男人的天堂一区二区| 日本老太婆做爰视频| av网站免费观看| 色就是色亚洲色图| 亚洲a毛片| 久草av电影| 欧美日韩高清在线| 宅狼社影院| 淫语视频| 在线观看视频日本| 欧美性xxxxx极品| 欧美中文视频| 天天色综合6| 欧洲成人免费| 午夜激情成人| 娇小萝被两个黑人用半米长| 免费成人深夜夜视频| 欧美成人综合在线| 久久久久久久蜜桃| 双性尿奴穿贞c带憋尿| 天堂av2021| 日韩av不卡在线| www.男女| 国产春色| 国产黄色片视频| 中文在线观看免费网站| 日韩av首页| 福利片在线播放| 久久不卡电影| 黄色日批视频| 91欧美成人| 亚洲av永久无码精品| 象人高潮调教丨vk| 五月婷婷av在线| 欧美极品jizzhd欧美仙踪林| 日本黄色免费| 曰本人三人交╳╳╳69男同| 欧美性猛交xxx乱大交3蜜桃| 亚洲ⅴ国产v天堂a无码二区| 在线观看免费黄色| 日韩一二三区视频| 色综合av在线| 国产成人区| 国产熟女露脸对白硬了精品| 中文字幕蜜桃| 久久久av一区二区三区| 免费a级黄色毛片| 四虎影院永久地址| 加勒比一区二区| www.污在线观看| 五月婷婷亚洲| 夜夜操网址| www.xxx久久| 日本大胆裸体做爰视频| 日本免费网址| 成人性生交大片| 久久涩涩| 美女久久久久| 羞羞的网站在线观看| 久热伊人| 成人h动漫在线| 色综合天天综合网国产成人网| 欧美精品久久久久| 国模av| 污网站在线播放| 色夜午夜www日本| 久久影视院线| 色草在线| 西西4444www大胆无视频| 欧美 日本 在线| 久久成人毛片| 91插插插影库永久免费| 日韩久久色| 国产传媒精品| 成人香蕉视频在线观看| 精人妻一区二区三区| 九色影视| 色综合99久久久无码国产精品| 久精品在线观看| 天天做天天干| 特级黄色片子| 波多野结衣在线网址| 久久亚洲免费视频| 国产精品免费久久久久| jizz中文字幕| 国模叶桐尿喷337p人体| 亚洲色图28p| ⅹⅹⅹ黄色片视频| 800av在线视频| 六月婷婷视频| 在线视频成人| 成人久久久久久久| 壮汉被书生c到合不拢腿| 久久伊| 欧美国产免费| 国产精品午夜一区二区| 亚洲AV成人午夜无码精品久久| 欧美劲爆第一页| 好吊精品| 日韩国产欧美综合| 免费看国产一级片| wwwwww在线观看| 国产精品网址| 靠逼在线观看| 91精品国产综合久久久久| 性无码专区无码| 精品在线你懂的| 九九福利视频| 他揉捏她两乳不停呻吟微博| 日本性高潮视频| 羞羞动态图| 中文国产视频| 国产suv精品一区二区69| 亚洲天堂第一页| 精品欧美乱码久久久久久1区2区| 亚洲视频综合网| 黄色一极毛片| 午夜激情欧美| 落日余晖| 日本亚洲高清| 岛国av在线| 男女日b动态图| 女生扒开尿口给男生捅| 日韩精品一区二区三区免费视频| 中文字幕校园春色| 国产裸体永久免费视频网站| 少妇秘书办公室啪啪h| 8×8x8×8人成免费视频| 国产日韩一区二区在线观看| 在线成人播放| 欧美亚洲精品在线观看| 日韩电影一区二区| 国产色在线观看|